We begin to describe the first formula:
1-1) y := x*x is x²
1-2) y := x*x + sqr() is the square for the tangent
1-3) y := x*x + sqr( sin() / cos() ) is the actual tangent, which is not in pascal
1-4) in sin and cos brackets you need to add (x+pi)/2
As a result, the first formula turned out to be:
y := x*x + sqr( sin((x + pi) / 2) / cos((x + pi) / 2) )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
Second:
2-1) y := cos() is understandable so
2-2) y := cos( exp( ln() / 5)) - fifth degree root
2-2) y := cos( exp( ln( abs(x + ln(abs(x))) ) / 5)) - it’s just
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
Third:
3-1) y := exp( ln() / 3) - the root of the third degree
3-2) y := exp( ln( x + exp(x) * sqrt(x + 1) - pi ) / 3) - add only what is under the root
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
That's the whole program:
var x,y: real; begin writeln('ввести x'); readln(x); if x <= -0.5 then y := x*x + sqr( sin((x + pi) / 2) / cos((x + pi) / 2) ) else if x > +0.5 then y := exp( ln(x + exp(x) * sqrt(x + 1) - pi) / 3 ) else { -0.5 < x <= +0.5 } y := cos( exp(ln( abs(x + ln(abs(x))) ) / 5) ); writeln('y(', x:6:2, ') = ', y:6:2); end.