Matlab helps me solve this problem in finding a non-trivial solution of a SLAE in numerical form using the null function:
a=[ -(dc.ge+dc.gh) dc.rh dc.re dc.gr; dc.gh -(dc.ge+dc.rh) 0 dc.re; dc.ge 0 -(dc.gh+dc.re) dc.rh; 0 dc.ge dc.gh -(dc.re+dc.rh+dc.gr)]; res=null(a); `
If I use the solve function, I find trivial system solutions, namely:
syms xyzfk N00 N01 N10 N11 sol; E1 = -(x+y)*N00+f*N01+z*N10+k*N11; E2 = y*N00 - (x+f)*N01+z*N11; E3 = x*N00 - (y+z)*N10+z*N11; E4 = x*N01 + y*N10 - (z+f+k)*N11; sol=solve(E1,E2,E3,E4,N00,N01,N10,N11); Is there a way to get an analytic nontrivial solution of a SLAE above? Is it desirable in a hardware or less friendly simple application programs? Is this even possible?