Code:
model = Sequential() model.add(Embedding(max_features, 32)) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(num_classes, activation="sigmoid")) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=256, epochs=15, validation_data=(x_test, y_test), verbose=2) scores = model.evaluate(x_test, y_test, batch_size=256) Are there more suitable / efficient neural network architecture options for text classification?