Sorry, I am getting acquainted with tensorflow, on the manufacturer's website, code for a quick start. Output to the console on the right. If you use network creation for example using tf.nn.conv2d and output
train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) it works fine. The code uses the keras module, the result is unknown characters. TensorFlow-gpu1.5. How can I fix it, do not tell me. Code:
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation=tf.nn.relu), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test) 
mnist.load_data()remarkably first downloads the data, and then returns them already broken into the training and test date of the set ... - MaxU